
mprovements in screening and diagnosing prostate cancer have occurred with
the use of prostate-specific antigen (PSA) and the development of gray-scale
transrectal ultrasound (TRUS) biopsy techniques. As the human genome project

moves forward, we may be able to identify specific abnormalities that may predispose
to cancer and thus alter our screening approach. Likewise, new markers, exemplified
by serum insulin-like growth factor-I (IGF-I), may predict future development of the
disease. Enhancements in TRUS biopsy, including contrast agents, artificial neural
networks, and the parameters for follow-up biopsy will improve the accuracy of our
current diagnostic techniques. This report presents highlights of papers presented at
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The successful treatment of prostate cancer relies on detection of the disease
at its earliest stages. Although prostate-specific antigen (PSA)-based screening
has been a significant advance in the early diagnosis of prostate cancer, iden-
tifying specific genetic alterations in a given family or patient will allow more
appropriate screening for early disease. Mapping and identification of specific
prostate cancer susceptibility genes is slowly becoming a reality. Other prostate
cancer risks include a family history, race, and possibly serum markers such as
insulin-like growth factor-I (IGF-I). Once a high-risk man is identified, transrec-
tal ultrasound (TRUS)-guided biopsies are the standard to diagnose prostate cancer.
Although TRUS is an advance over traditional digitally directed biopsies, it
represents a random sampling of the prostate since most lesions cannot be
visualized. Newer modalities such as ultrasound contrast agents, pattern
recognition, and artificial neural networks (ANNs), applied to TRUS images,
may improve diagnostic accuracy. If a man at risk for prostate cancer has
undergone a negative TRUS biopsy, the decision for the need for additional
biopsies is problematic. Use of PSA derivatives such as free and total PSA
and the initial biopsy abnormalities such as atypia or high-grade prostatic
intraepithelial neoplasia may define those patients in need of follow-up biopsy.
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the 11th International Prostate Cancer
Update held in Vail, Colorado that
addressed these current issues in the
early diagnosis of prostate cancer.

Prostate Cancer 
Susceptibility Genes
The prevalence of prostate cancer
varies markedly between different
ethnic groups, with the highest fre-
quency in African Americans and the
lowest frequency in Asian popula-
tions. This ethnic disparity may be
attributable to environmental factors,
genetic factors, or both. Studies have
investigated the role of family history
as a risk factor for prostate cancer.1,2

Reports of families with large numbers
of cases, as in the Utah Mormon
population, have been key for
exploring inherited prostate cancer.3,4

The risk of prostate cancer increases
with younger age of onset in a rela-
tive or when the number of affected
individuals in a familial cluster
increases. This increased risk is
strong evidence for a genetic compo-
nent. For example, the brother of a
man diagnosed at age 50 has a rela-
tive risk of 1.9 times of developing 
a prostate cancer compared with a
brother of a case diagnosed at age
70.5 Having two or three first-degree
relatives affected increases the relative
risk by 4.9 and 10.9 times, respec-
tively.6 Monozygotic twins have a
fourfold increased rate of prostate
cancer compared with dizygotic

twins.7 Estimates using the combined
data from 44,788 sets of twins in
Swedish, Danish, and Finnish reg-
istries suggest that up to 42% of all
prostate cancer risk may be explained
by inheritable factors.5 Identification
of these specific genetic alterations
that place a man at a higher risk of
developing and dying of prostate
cancer is an area of intense investi-
gation that is further facilitated by
the Human Genome Project. A list of
potential genetic alterations in prostate
cancer can be found in Table 1.

A correlation between CAG repeat
length in the androgen receptor and

age of onset of prostate cancer has
been observed.8 A study of 587 indi-
viduals demonstrated an inverse rela-
tionship between CAG repeat length
in the androgen receptor (AR) gene
and risk of aggressive prostate can-
cer.9 Other studies support an associa-
tion between reduced AR CAG repeat
length and increased risk of prostate
cancer, the length of the polymor-
phism GGC repeat in the AR being an
additional potential risk factor.1010

Four prostate cancer susceptibility
loci (HPC1 at 1q24, PCAP at 1q42,
HPCX at Xq27, and CAPB at 1p36)

have been described and tested 
on independent data sets.11–14 Another
recent study presents significant evi-
dence for linkage to a new locus,
HPC20 at 20q13.15 Of these, only the
HPC1 linkage has a reasonable level
of independent confirmation; other
studies found no significant evidence
for linkage.3,16,17 Although the initial
report of linkage to HPC1 suggested
that up to 34% of prostate cancer
families could be related to this
locus, a subsequent pooled analysis
of 772 families demonstrated the
proportion to be about 6%.18

Positional cloning techniques have
identified ELAC2, a candidate prostate
cancer susceptibility gene at 17p12.19

This is the first prostate cancer 
susceptibility gene cloned after a
genome-wide scan of high-risk fam-
ilies. There is evidence that both
frameshift and missense mutations
are disease associated at this locus.

Familial co-segregation of breast
and prostate cancer has also been
reported. In breast/ovarian cancer
families, male carriers of a deleterious

mutation in BRCA1 or BRCA2 have
been shown to be at a three- and
sevenfold risk of prostate cancer,
respectively.20,21

Prostate cancer is the cancer most
sensitive to hormonal manipulation.
Analyses of genes encoding proteins
involved in androgen biosynthesis
and action led to the observation 
of a significant association between
common genetic variants and a sus-
ceptibility to prostate cancer. One
such gene is the 5�-reductase type II
gene (SRD5A2), which catalyzes the
conversion of testosterone into dihy-

• ELAC2 at 17p12

• BRCA1/BRCA2

• 5�-reductase type II gene
(SRD5A2) at 2p23-22

• Androgen receptor alterations
(CAG, CCG repeats)

Table 1
Potential Genetic Alterations Under Study in Prostate Cancer

Estimates using the combined data from 44,788 sets of twins in
Swedish, Danish, and Finnish registries suggest that up to 42% of all
prostate cancer risk may be explained by inheritable factors.

• HPC1 at 1q24

• PCAP at 1q42 

• HPCX at Xq27 

• HPC20 at 20q13.18

• CAPB at 1p36
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drotestosterone (DHT) and maps 
to 2p23-22.22

The growing body of knowledge of
the potential familial aspects of
prostate cancer provides an impor-
tant tool for understanding the
mechanisms underlying the molecu-
lar basis of prostate cancer. Study of
the genetic aspects of tumor initia-
tion and progression will probably
yield more effective screening, treat-
ment, and prevention strategies in
the future.

IGF-I as A Marker for 
Prostate Cancer
The IGF system consists of a series of
ligands (IGF-I, IGF-2, insulin), binding
proteins (IGF binding proteins 1–6),
and receptors. IGF-IR (also known as
the type I IGF receptor) binds both
IGF-I and IGF-II and is a cell surface
receptor in the tyrosine kinase class.
The IGF-II receptor preferentially
binds IGF-II but does not appear to
transduce a mitogenic signal. IGF-I
has been proved to be an important
mitogenic and antiapoptotic peptide
in many tumors, including breast,
lung, and colorectal, as well as prostate

cancer.23,24 In vitro studies have estab-
lished that human prostate cancer
cell lines have functional IGF-I, with
blockage of the receptor leading to
cessation of growth.25,26 The presence
of IGF-I in prostate cells and its
potential role in the growth and
development of cancer suggest that
IGF-I may serve as a predictor of
prostate cancer or potential target for
prostate cancer therapy. 

The prostate cancer literature pres-
ents conflicting evidence to the predic-
tive value of IGF-I and the develop-
ment of prostate cancer. Some studies
show a positive relationship between
IGF-I and prostate cancer, whereas
others show an inverse relationship
or no relationship at all (Table 2).

An association between elevated
levels of plasma IGF-I and an
increased risk of prostate cancer has
been shown in a number of studies.
There appears to be no correlation
between IGF-I and benign prostatic
hyperplasia (BPH), but increased levels
of IGF-I (> 60 ng/mL), are suggested
to be associated with an increased
risk of prostate cancer. Three studies
(by Wolk et al,27 Montzaros et al,28

and Chan et al29) support a statisti-
cally significant association between
elevated IGF-I levels and the risk of
developing prostate cancer.

Other studies do not come to the
same conclusion. These studies have
compared prostate cancer patients
with counterparts who have normal
prostates and benign prostatic
hypertrophy.30–36 Several of these
studies have actually suggested an
inverse relation between IGF-I levels
and risk.33,36 In patients undergoing
radical prostatectomy for localized
disease, plasma IGF-I levels predicted
neither organ-confined disease nor
the risk of PSA progression and did
not correlate with preoperative PSA
level or final Gleason score. 

There may be many reasons for
these diverse observations: the specific
IGF-I assay system used, treatment
with hormonal therapy, and, most
importantly, consideration of the
effects of IGF binding proteins on
serum IGF-I levels. The role of IGF-I
as a risk factor for prostate cancer
deserves continued study. 

With inhibition of the IGF-IR path-
way, normal cells appear to simply
stop growing, but cancer cells appear
to die rapidly through an apoptotic
mechanism. Impairment of the IGF-IR
function has dramatic effects on can-
cer cells growing in anchorage inde-
pendence compared with cells growing
in monolayer.37 If IGF-I proves not to
be a reliable marker for the disease, it
may still have a role in therapy.

Contrast-Enhanced 
Prostate Biopsy
Years of experience have shown that
TRUS-directed prostate biopsy,
although very useful, has several
limitations.38,39 Prospective TRUS
imaging data have demonstrated that
conventional gray scale is slightly
superior to random chance in
prostate cancer detection.40 The trend
is to increase the number of biopsies

Table 2
Published Studies on the Role of 

Elevated IGF-I and Prostate Cancer Risk

Total no. in Study
Study (Prostate Cancer/Control)

Studies supporting an association

Chan et al, 199829 304 (152/152)
Montzaros et al, 199728 104 (52/52)
Wolk et al, 199827 434 (210/224)

Studies not supporting an association

Kanety et al, 199230 34 (24/10)
Cohen et al, 199231 48 (32/16)
Ho et al, 199732 31 (16/15)
Schaefer and Friedman, 199833 215 (45/170)
Baffa et al, 200036 96 (57/39)
Shariat et al, 200035 150 (120/30)
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in order to compensate for the limi-
tations of the imaging alone.41 The
traditional lesion-directed biopsy led
to the development of the six-core,
or sextant, biopsy technique. Today,
at least eight to ten biopsies are rec-
ommended to sample the prostate
gland more adequately. These addi-
tional biopsies tend to be laterally
directed. Imaging of the prostate
must be improved in order to
enhance the detection of cancer.

Enhanced ultrasound techniques,
such as color flow Doppler imaging
(CDI) studies, have been investigated
to improve the diagnostic ability of
TRUS. Although studies suggest that
CDI has potential prognostic signifi-
cance, CDI can overlap with prostatitis
and has low sensitivity in detection
of tumor blood flow within prostate
cancer. Alterations in the vascularity
of prostate cancer have focused
attention on ways to visualize char-
acteristic vascular abnormalities,
such as microbubble contrast agents.
The use of intravenous microbubbles
(average diameter 2 to 5 �m leads to
marked enhancement of the signal-
to-noise ratio and enhanced visuali-

zation on TRUS.42 Several vascular
ultrasound agents are being studied
for their use in prostate imaging;
most such agents have demonstrated
enhancement on gray-scale imaging
(Table 3).

A study using EchoGen (Sonus
Pharmaceuticals, Bothell, WA) con-
sisted of 15 patients with a rising
PSA; 14 of the 15 had a negative
prior biopsy.43 CDI TRUS was per-
formed before and after EchoGen
administration and correlated with
sextant biopsies. Abnormal microves-
sel patterns were noted in eight

patients; in two of these the lesions
were malignant, one patient was
diagnosed with prostatitis, and in
two the lesions were benign. False-
negative results were observed in
three patients. Levovist (Schering
AG, Berlin, Germany) was used in
nine cases of prostatic cancer, with
blood flow images enhanced in all
cases.44 In both studies, the authors
concluded that contrast CDI is a
promising technique that may allow
for better imaging of blood flow and
more accurate detection of early

malignant lesions. Bogers et al45 were
the first to report the use of contrast-
enhanced three-dimensional power
Doppler angiography in the human
prostate. With Levovist as a contrast
agent, 18 patients with a suspicion of
prostate cancer were evaluated; the
study findings indicated that con-
trast-enhanced power Doppler and
three-dimensional image reconstruc-
tion offers a useful imaging tool with
good potential to improve prostate
cancer detection in the future. 

Adequate enhancement of ultra-
sound imaging using microbubble

contrast agents is dependent on the
ability of these agents to traverse the
tumor neovascularity safely without
being destroyed. Unfortunately, con-
ventional ultrasound systems deliver
power levels sufficient to destroy
microbubbles. A potential solution to
this problem is the use of intermit-
tent imaging. Standard gray-scale
ultrasound image is refreshed at 30
frames per second; thus the amount
of contrast agent available for each
frame is that which enters the imag-
ing plane in 1/30th of a second. This
short period is usually not sufficient
for contrast agents to enter small-
diameter vessels. With intermittent
imaging, the ultrasound beam is
turned off for longer periods between
each frame, allowing more contrast
material to enter the imaging plane
during this interscan period. An ini-
tial experience at Thomas Jefferson
University with 26 subjects indicated
that intermittent imaging might
enhance visualization of malignant
neovascularity, with several patients
demonstrating enhancement of tumor
foci not detected by conventional
gray-scale imaging or CDI. 

The group from Thomas Jefferson
University has reported using
Imagent (Alliance Pharmaceutical
Corp., San Diego, CA) as a prostate
contrast agent.46 Twenty-six subjects

• Echovist (Schering, Berlin, Germany)

• Levovist (Schering) 

• EchoGen (Sonus Pharmaceuticals, Bothell, WA)

• Imagent US (Alliance Pharmaceutical, San Diego, CA)

• Definity (DuPont Pharmaceuticals, Billerica, MA)

None of the agents are currently approved by the U.S. Food and Drug Administration
for use in the evaluation of prostate cancer.

Table 3
Some Vascular Ultrasound Contrast Agents 
Under Study in Imaging Prostate Cancer

Today, at least eight to ten biopsies are recommended to sample the
prostate gland more adequately.
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with an elevated PSA and/or abnormal
digital rectal examination (DRE) were
studied. Continuous gray-scale, inter-
mittent gray-scale, phase inversion
gray-scale, and power Doppler sonog-
raphy of the prostate were performed
and correlated with sextant biopsy
results. The study demonstrated signif-
icant visible enhancement (P < .05)
after administration of Imagent.

In another study, 60 subjects were
evaluated with conventional gray-
scale, harmonic gray-scale, and power
Doppler sonography.47 The evaluation
was repeated using IV Definity
(DuPont Pharmaceuticals, Billerica,
MA). Gray-scale imaging was per-
formed in continuous mode and with
intermittent imaging using interscan
delay times of 0.5, 1.0, 2.0, and 5.0
seconds. Sextant biopsy sites were
scored prospectively as benign or
malignant on baseline imaging, 
and again during contrast-enhanced
TRUS. Prostate cancer was present 
in 37 biopsy sites from 20 subjects.
Baseline imaging demonstrated
prostate cancer in 14 sites from 11
subjects. Contrast-enhanced TRUS
demonstrated prostate cancer in 24
sites from 15 subjects. Each of the
five subjects whose prostate cancer
was missed had only a single posi-
tive biopsy score (Gleason score ≤ 6).
The improvement in sensitivity from
38% at baseline to 65% with contrast
was significant (P < .004). Using the
contrast agent Definity along with
TRUS improves sensitivity for detec-
tion of malignant foci within the
prostate without substantial loss 
of specificity. 

The currently available data sug-
gest that ultrasound contrast agents
may enhance our ability to identify
specific foci of prostate cancer on
TRUS. In particular, higher grade
cancers may be more easily detected
than low-grade lesions. These con-
trast agents may become a standard
part of TRUS biopsy in the future. 

Analysis of TRUS Images by
Artificial Neural Networks
Another potential means of enhancing
TRUS images and identifying malig-
nant foci is the use of artificial neural
networks. Automated image analysis,
including pattern recognition and
artificial neural networks (ANNs)
applied to TRUS images, may success-
fully identify lesions that cannot be
seen by the human eye. At present,
such automated image analysis and
pattern recognition are unavailable
for existing TRUS systems.

ANNs, a type of artificial intelli-
gence, are a software construct based
roughly on the neural structure of
the brain. Basic processing units
called nodes simulate neurons, and
weighted interconnections between
the nodes simulate dendrites and

axons.48 The interconnection weights
function as multipliers that simulate
the connection strengths in the anal-
ogous biological model. The ANN 
is not programmed but learns by
experience, via a “supervised learning"
phase called training. Other types of
ANNs may rely on an unsupervised
learning method.48 Cases that include
inputs and known outputs, such as
sets of clinical variables and a
known pathological outcome, are
presented to the ANN sequentially
and repeatedly. A training algorithm
automatically adjusts the connection
weights, consequently changing the
output values, to reduce errors
between the actual ANN outputs and
the expected outputs. As the ANN is
trained, a set of connections is devel-
oped that allow for the largest number
of correct predictions for the given
training data set. The ANN is next
validated with new cases not used

previously. This “trained" ANN will
function in a way similar to a math-
ematical function with inputs analo-
gous to independent variables and
outputs analogous to dependent
variables. The ANN’s performance
can be measured by calculating the
sensitivity, specificity, negative pre-
dictive value (NPV), and positive pre-
dictive value (PPV) for a specific ANN
output cutoff. The overall performance
(ie, over all output cutoffs) may be
quantified by generating a receiver
operator characteristic (ROC) curve. 

In 1992, the first efforts to analyze
TRUS images of the prostate were
published.49 ANN was able to distin-
guish between prostatic and nonpro-
static tissues in TRUS images.
Investigators have used ANNs for
spectral analysis of ultrasound RF

signals (pre-image) and ANNs to
analyze ultrasound images of breast,
colon, prostate, and other tissues,
with promising results.50,51 Workers at
the University of Kiel, Germany,
have assembled a prospective library
of prostate tissue types by gathering
TRUS images prior to radical prosta-
tectomy (RP) and comparing these
with whole-mount pathology slides.52

In this work, an ANN was used to
identify areas suspicious for cancer
in a validation set of TRUS images.
Preliminary data demonstrated that
99% of confirmed benign samples
were correctly identified, with 79% of
malignant lesions correctly classified.
Ninety-seven percent of isoechoic
cancers on TRUS were correctly
classified by the ANN. Workers with
the Artificial Neural Networks in
Carcinoma of the Prostate (ANNs in
CaP) Project (Crawford, Gamito, and
associates) were able to confirm inde-

The currently available data suggest that ultrasound contrast agents may
enhance our ability to identify specific foci of prostate cancer on TRUS.

VOL. 3 SUPPL. 2  2001 REVIEWS IN UROLOGY    S35

Risk Assessment for Prostate Cancer



pendently a subset of the results with
the data of Loch and colleagues52 by
using an ANN to distinguish between
Gleason grade 3 and 4 lesions. This
model correctly identified 82% of
grade 3 lesions and 67% of grade 
4 lesions. 

Crawford and colleagues from the
Institute for Clinical Research in
Washington, DC (ANNs in CaP
Project) are developing software to
analyze and interpret TRUS images
through pattern recognition software,
ANNs, and multivariate analysis. This
technology will be developed to
identify areas of TRUS images that
are indicative of malignant lesions
and to distinguish such areas from
areas that show healthy tissue. TRUS
images are to be gathered prior to RP
at three study centers and correlated
with the whole-mount prostate spec-
imens. Using digital image processing
software, TRUS image cross sections
will be matched with their corre-
sponding whole-mount sections, and
areas of interest will be marked on
the TRUS images. Image filters and
pattern recognition software will be
used to extract features/signatures
from the TRUS images that will then
be used to train an ANN. Software is
also being developed to construct
three-dimensional models from the
TRUS cross sections. If these systems
can identify malignant lesions with-
in the prostate, a logical next step
will be to develop a system to allow
real-time direct biopsies of the
prostate. This technology may also
be applicable to other modalities
such as magnetic resonance imaging
(MRI) and CDI and may be used in
future studies.53,54

The development of technologies
to identify malignant lesions in
TRUS images using a system of
image filters, traditional statistical
methods, and ANNs may have a pos-
itive impact on prostate cancer
patients by improving the accuracy

of needle biopsies. Furthermore, the
ability to store three-dimensional
images of the prostate may aid
patients and their physicians in the
watchful waiting strategy.

Repeat Needle Biopsy 
of the Prostate
Even though serum PSA is the most
useful tumor marker for the diagnosis
of patients with prostate cancer, this

marker is still hampered by a lack of
specificity. Until the enhanced ultra-
sound techniques such as contrast
and ANNs become commonplace,
many patients will require repeat
prostate biopsy. 

Approximately two thirds of men
undergoing prostate needle biopsy
have benign histology. However, a
20% to 40% incidence of positive
repeat biopsy in men with elevated
PSA who had an initial negative
biopsy has been demonstrated.5555 The
presence of prostatic intraepithelial
neoplasia or atypia on initial prosta-

tic biopsy are predictive factors of
high risk of invasive carcinoma and
constitute an indication for repeat
biopsy. Numerous studies have
demonstrated that a significant num-
ber of men with an initial negative
prostate needle biopsy but persist-
ently elevated serum PSA level will
have prostatic malignancy on subse-
quent biopsy. In a screening report by
Catalona and colleagues56 involving

9333 men in whom serial PSA meas-
urements were taken, 25% of men with
a PSA > 4.0 ng/mL undergoing a sec-
ond, third, or fourth biopsy following
an initial or repeated negative biopsy
were found to have prostate cancer.

PSA exists in different molecular
forms in the systemic circulation 
as free PSA, PSA bound to �1-anti-
chymotrypsin, and PSA bound to 
�2-macroglobulin. The proportion of

PSA �1-anti-chymotrypsin was
greater in patients with prostate cancer
than in those with benign prostatic
hyperplasia.57,58 Subsequent studies
were able to demonstrate some pat-
tern of enhanced specificity without
significantly sacrificing sensitivity. A
recent multi-institutional trial revealed
that patients with a free-to-total PSA
ratio of ≤10% have a >50% proba-
bility of cancer.59

One approach toward identifying
patients who could benefit from
repeat biopsy is the use of the free-
to-total PSA ratio as a predictor of

prostate cancer. Brawer and col-
leagues60,61 have studied archival
specimens to determine the ability of
the free-to-total ratio to predict sub-
sequent prostate cancer. The median
Hybritech free-to-total PSA ratio was
significantly lower in patients with
positive repeat prostate needle biopsy
compared with those who had a neg-
ative biopsy (14.9% vs 19.4%, P = .05).
Total PSA as well as the percent

[Software] will be developed to identify areas of TRUS images that are
indicative of malignant lesions and to distinguish such areas from areas
that show healthy tissue.

Numerous studies have demonstrated that a significant number of men
with an initial negative prostate needle biopsy but persistently elevated
serum PSA level will have prostatic malignancy on subsequent biopsy.

S36 VOL. 3 SUPPL. 2  2001 REVIEWS IN UROLOGY

Risk Assessment for Prostate Cancer continued



Dianon free-to-Hybritech total PSA
ratio were not significantly different
between the two groups of men.

For total PSA in the range of 2 to
15 ng/mL, the Hybritech free-to-total
PSA ratio appeared to aid in the pre-
diction of cancer on repeat biopsy A
free-to-total PSA ratio in the range
of 2 to 15 ng/mL as determined by
Hybritech assay appeared to aid in
the prediction of cancer on repeat
biopsy when biopsy was previously
negative. Although this study is lim-
ited by the relatively small sample
size, the data suggest a potential use
of the free-to-total PSA ratio to indi-
cate a higher likelihood for the pres-
ence of missed clinically significant
carcinoma; hence repeat prostate
biopsy would be recommended in
clinical practice and other settings. It
should be noted that serial free-to-

total PSA ratio measurements can be
different among different assays; this
should be considered when interpret-
ing serial assays from different labs.60,61

To define the role of repeat needle
biopsy further, Brawer and col-
leagues62 presented data on 100 sex-
tant prostate needle biopsies without
a diagnosis of malignancy, which
were repeated. Carcinoma was
detected in 20 repeat biopsies (20%).
Stratification based on initial biopsy
result revealed carcinoma in 10 of 
69 cases (14.5%) without prostatic
intraepithelial neoplasia or atypia, 
5 of 17 (29.4%) with atypia, 5 of 5
(100%) with grade II or III prostatic
intraepithelial neoplasia, and 0 of 9
with grade I prostatic intraepithelial
neoplasia. PSA and PSA velocity did
not provide statistically significant
stratification, perhaps because of the
wide variance in these parameters
and the small sample size. 

These results suggest that patients
with a diagnosis of glandular atypia,
or grade II or III prostatic intraep-
ithelial neoplasia on initial biopsy,
are at high risk for invasive carcino-
ma and should undergo repeat
prostate needle biopsy.62 A rapidly
increasing serum PSA level or gross-
ly abnormal digital rectal examina-
tion may also indicate carcinoma 
not discovered on initial biopsy (see
Table 4).63

Conclusions
Advances continue in the area of
early diagnosis of prostate cancer.
With the advent of PSA-based
screening in the early 1990s, we are
witnessing a slow and steady decline
in the death rates from prostate can-
cer. The new tools and approaches
reviewed here will continue to fuel
improvements in the outcome of
patients with prostate cancer.        
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